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PREFACE 

Guided projectiles generally have a requirement for estimating their current states in 
order to accurately guide to their targets. While recently it has become more common to 
accomplish this with GPS, there are many projectiles that continue to employ inertial 
measurement units (IMU) to measure their linear accelerations and rotational rates. One 
common way to use this data is to integrate it to get the projectile velocity and position while in 
flight. The purpose of this report is to propose an alternate approach that allows the projectile to 
estimate its current airspeed using its measured axial acceleration and a priori knowledge of its 
drag characteristics using a three-state extended hybrid Kalman filter. This airspeed estimate 
can be used in the guidance system to look up aerodynamic coefficients or to estimate an 
absolute value of velocity to be used in integrating the accelerations measured by the IMU. 

For the purposes of this work, it is assumed that high quality axial accelerometer data is 
available to the guidance processor, as is often the case on guided munitions. This data is 
assumed to have negligible bias induced by gun-launch and negligible drift. While bias and drift 
errors could be addressed in the future, the current work serves as a proof of concept for using 
the axial acceleration data to estimate airspeed. 

The author would like to thank Professor Richard Haddad, without whose insight, 
encouragement, and time this work would not have been completed. 



SUMMARY 

In order for guided projectiles to successfully guide themselves to a given target, it is 
often necessary for them to estimate their current air-relative velocity. In the case of a guided 
projectile that has an inertial measurement unit (IMU), the axial acceleration measurement may 
be used to determine the absolute air-relative velocity. This is possible if the axial force 
coefficient and mass properties of the projectile are known a priori. 

One way to implement this velocity estimation is with an extended hybrid Kalman filter 
that takes into account the non-linearities in the system dynamics, while allowing for discrete 
measurements to be incorporated into the estimates. The filter designed here estimates three 
states of the projectile, including the air-relative velocity, the altitude, and the flight path angle. 
The filter was tuned and tested on simulated data first, to evaluate its performance against 
known values. It was then tested on actual flight data. It was shown to perform well in both of 
these scenarios 

INTRODUCTION 

Guided projectiles often take many measurements during flight in order to estimate their 
current position, velocity, angular position, and angular velocity. These estimates are crucial for 
the projectile to successfully guide itself to its intended target. These measurements can 
include global positioning system (GPS) position and velocity data, body-fixed accelerometer 
data, body-fixed rate sensor data, seeker measurements, etc. The purpose of this report is to 
provide a way to use axial accelerometer data, along with a priori knowledge of the axial force 
coefficient of the projectile, to estimate the absolute airspeed of a projectile. The solution 
method proposed uses an extended hybrid Kalman filter to provide this estimate. 

The process is assumed to begin with high quality accelerometer data that has a very 
small bias induced by gun launch and a very low drift rate. Both of these sources of error are 
assumed to be negligible for the filter that is developed. In addition, it is assumed that the 
accelerometer data has white, Gaussian noise on top of the signal of interest. At the time of 
writing, data of this quality were available for investigation of this filter. 

This report will first present the dynamic model of the projectile, along with the 
measurement equation used in the filter. It will then explain the processing required to convert 
the dynamic model into the required matrices for the Kalman filter, detailing how the non- 
linearities were handled in determining the Jacobian of the system.   Simulation data that was 
used to tune the filter will then be presented along with a discussion of the filter's performance. 
Finally, a sample data set from a real test flight will be presented to show the filter's performance 
on real-world data. The primary reference used for the Kalman filter equations is Chapter 13 of 
Optimal State Estimation, by Dan Simon (ref. 1). 



METHODS, ASSUMPTIONS, AND PROCEDURES 

Observability 

The most important premise of the development of the Kalman filter is that the state of 
interest is observable from the measurements available. Since the equations involved are 
nonlinear and involve table lookups, the standard observability matrix cannot be formed. 
However, it is possible to make a more intuitive argument that the absolute velocity, relative to 
the air mass, is observable from the acceleration measurement. 

If it is assumed that the projectile flies with a very small angle of attack, it can be 
assumed that the aerodynamics are only a function of Mach number. In addition, if the projectile 
is flying a ballistic trajectory, then the only aerodynamic coefficient affecting the axial 
acceleration is the axial force coefficient, CX. Mach number is defined as the air-relative 
velocity divided by the speed of sound, which varies in a known way with altitude. Therefore, 
the measured axial acceleration of the projectile can be written as follows: 

ax=±-V2Srefp(z)CX{V,z) (1) 

where 

ax = measured axial acceleration 

m = projectile mass 

V = total projectile velocity relative to the air 

sref - reference area of the projectile 

p = air density 

z = altitude 

CX = axial force coefficient 

Here the reference area of the projectile is determined by how the axial force coefficient 
was calculated a priori, and it is usually equal to the projected frontal area of the body. In 
addition, the air density is assumed to vary with altitude. An important note is that there is no 
gravity term in this equation because although the projectile experiences accelerations due to 
gravity, the accelerometer proof mass experiences exactly the same accelerations, so 
gravitational accelerations are not measurable with accelerometers in free flight. From this 
equation, it is apparent that given knowledge of the projectile geometry, mass, and axial force 
coefficient along with an estimate of the altitude, an iterative solution method would be able to 
calculate the air-relative velocity from a measurement of the axial acceleration. Although there 
are many options, particularly if it is only desired to solve this equation at a single point, the 
iterative solution method chosen for this work was an extended hybrid Kalman filter. This choice 
was made because the Kalman filter will also allow the altitude to be estimated throughout the 
flight. 



System Dynamics and Measurement Equation 

The first step in developing the filter is to define the system dynamics in a way that 
captures the important relationships between states, but also is described in terms of the states 
of interest so they will be estimated directly by the filter. The first state chosen was the air- 
relative velocity, V. This is the state of interest, so including it directly in the system dynamic 
equations was natural. From the observability analysis, the altitude, z, also needs to be 
estimated, so this was included as the second state. In order to propagate these two states, a 
relationship between them is needed. For this, a third state was added. This state is the flight 
path angle, theta, which is the angle between the air-relative velocity and the horizontal. The 
state variables chosen are illustrated in figure 1. With these three states, the system dynamics 
can be propagated accurately according to the following system of differential equations. 

Figure 1 
Diagram of state variables 
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Note that since these equations need to describe the actual dynamics of the system, the 
acceleration due to gravity is now included. Also, there is an implicit assumption that there is no 
vertical velocity component of the wind. This means that the derivative of the altitude, z, is 
directly related to the air-relative velocity V, without knowledge of the wind. Here the explicit 
dependence of p and CX on velocity and altitude are omitted for clarity, but it should be 
understood that they are implicit functions of these state variables. In addition, the CX function 
is implemented in the filter as a table lookup with Mach number as the independent variable. 
This allows the filter to use nonlinear wind tunnel or flight test data for CX. 

The next equation needed to develop the Kalman filter is the measurement equation. 
This is exactly the same as equation 1, with the understanding that this is the theoretical 
measurement. The Kalman filter development assumes that there is additive white Gaussian 
noise contained in the actual measurements taken. The measurement equation is repeated 
here using the Kalman filter notation, h, to represent the measurements taken. 

h(V,z) = ax=^-pV2SrefCX (3) 



Here, the measurement is a function of two of the state variables, V and z. Again, the 
functional dependence of p and CX on V and z are implied. Note that the axial acceleration is 
assumed to be in the same direction as the velocity. This is illustrated in figure 2, and is a 
consequence of the assumption that the projectile is flying with a negligible angle of attack and 
is following a ballistic flight path. 

Figure 2 
Projectile axial acceleration 

Linearization of System 

The next step to developing the filter is to compute the Jacobian of the system dynamics 
and Jacobian of the measurement equations. These matrices will be evaluated at each time 
step and used by the filter to update the estimates of the state variables. The Jacobian of the 
system is calculated by taking partial derivatives of each of the state equations with respect to 
each of the state variables, resulting in a 3 by 3 matrix as follows 

' IdV dz 38 

^ll ^12 ^13 

^21 ^22 ^23 

•^31      ^32      ^33 

(4) 

Taking the partial derivatives yields the following values for the elements of this matrix 

4i3 = -g COS(0) 

A2i = — sin(0) 

A22 = Q 

A23 = -Vcos(8) 

(5) 

^31 =^9 cos(0) 



^32 = 0 

^33 =^9 sin(0) 

Notice that there are still some partial derivatives left to evaluate. This will be addressed 
shortly, but first, the Jacobian of the measurement equation will be evaluated. In this case, 
since there is only one measurement equation, the resulting Jacobian will be a 1 by 3 matrix. 

H = 
dh    dh    dh 

IdV    dz    d9 ~ [#11    #12    #13] (6) 

where 

*.-=pvw{or+M£)} 
(7) 

//,, = () 

Here again, note that there are partial derivatives still present. In fact, these are the 
same three partial derivatives needed for the evaluation of the system Jacobian. Each of these 
partial derivatives is evaluated in a different way. 

The partial derivative of CX with respect to z was evaluated in a brute force manner. 
This was necessitated by the fact that CX was input to the filter as a table of CX versus Mach 
number, which meant that an analytical partial derivative for CX with respect to z was not 
calculable. In this case, a second lookup of CX' based on a slightly perturbed altitude, z', was 
performed. A perturbation of 0.01 m worked well for the filter. Then, the partial derivative was 
evaluated numerically using the following equation 

dCX      CX'-CX 

dz z —z (8) 

The partial derivative of CX with respect to V was evaluated in a slightly less brute force 
manner. Although this partial derivative was still evaluated numerically, the bulk of the 
calculations were done off-line, ahead of time. This was enabled by the fact that the partial 
derivative of CX with respect to V is simply related to the partial derivative of CX with respect to 
Mach number, M, as shown in equation 9. 

dCX      1 fdCX\ 

dV     ' a\dM ) 
(9) 



Here, a is the speed of sound and can be calculated (ref. 2) from the estimate of z at 
each time step where this partial derivative needs to be evaluated. The partial derivative of CX 
with respect to M was calculated numerically, ahead of time, from the table of CX versus Mach 
number using a simple finite difference equation. 

The last expression to evaluate is the partial derivative of p with respect to z. This partial 
derivative was evaluated more analytically. A standard atmosphere model given by McCormick 
(ref. 2) was differentiated analytically to yield an expression for this partial derivative as given in 
equation 10 in terms of the density and temperature at ground level, p0 and T0, respectively 

^ = 0.0277 (&) '"   (T0 + 0.00651z)3256 (10) 

The units of temperature are Kelvin, the units of density are kilograms per meter cubed, 
and the altitude, z, is in meters. This equation is based on a very good fit to tabular data, which 
is applicable up to approximately 11 km above sea level. 

Continuous Filter Propagation 

For each time step of the filter, the states and error covariance matrix are first 
propagated according to the system dynamic model and the system dynamic noise. Since this 
filter is nonlinear, the easiest way to do this was to use a numerical integration scheme to 
advance the filter in time. The time step for the integration was set to match the data rate of the 
IMU data. A Runge-Kutta 4th order integration (ref. 3) was carried out to advance the system 
states as follows 

x = [v  z  e]T 

dt = tk — tfc.! 

A = /(^k-i'tfc-i) 

/2=/(*fc
+-i+/i7,t*-i+7) (11) 

/3=/(*fc
+-!+/2 y^-l+f) 

U = /(xj-i + h> tfc-i + dt) 

Xk = 4-i +1 (fi + 2/2 + 2/3 + U)dt 

Note here the switch to typical Kalman filter type notation. The subscript refers to the 
time index. The superscript plus means that the state was updated by the available measure- 
ment. The superscript minus means that the state was advanced in time by the system 
dynamics, but it has not been updated yet. So the purpose of this step is to advance from the 
last updated state to the next predicted state. 



The other matrix that needs to be advanced in time is the error covariance matrix, P. 
This matrix contains the filter's estimated error covariances for the states being estimated. 
During the propagation step this matrix grows depending on the system dynamics Jacobian as 
well as the system dynamic noise, Q. The system dynamic noise is a way to tell the filter how 
much the system dynamic model should be trusted. The relationship used allows the time 
derivative of P to be calculated based on A and Q. The error covariance matrix, P, is then 
propagated using a 1st order Eulerian integration scheme as follows 

Pk = APU + P^A7 + Q 
(12) 

Pk = pk-i + pkdt 

Note that again, the filter is propagating the previous step's updated estimate to get the 
current step's predicted value of the error covariance matrix. This matrix will be updated in the 
next step, along with the system dynamics, to account for the measurements being taken. 

Discrete Filter Update 

Since the measurements are being taken discretely, it is natural to use the discrete 
Kalman filter equations (ref. 1) to update the state estimates and error covariance matrix. The 
fact that the filter includes continuous propagation and discrete update makes it a hybrid filter. 
The first update step is to calculate the Kalman gain, K, from the error covariance matrix, the 
measurement Jacobian, and the measurement covariance matrix, R. Because this system has 
only one measurement, the measurement covariance matrix is a scalar that is the variance of 
the measured acceleration. The Kalman gain matrix is calculated as follows 

K = P^HT{HP^HT + R)'1 (13) 

The next step is to update the filter estimates using the measured acceleration, ameas, 
the measurement equation, and the Kalman gains. This step produces the best estimate at the 
current time of the states of the system. 

x£ = *k + K(ameas - /lOfc )) (14) 

The final step is to update the error covariance matrix, P, using the Kalman gains, the 
measurement Jacobian, and the measurement covariance matrix, R. This step estimates the 
performance of the filter at the current time step. 

p+ = (/ - KH)PK(I - KHY1 + KRKT (15) 

At this point the filter equations are complete. Using these equations, the filter can be 
propagated and updated to provide the best estimates of the states and the estimate of its own 
performance in terms of the error covariance matrix, throughout the trajectory. 



Testing and Tuning the Filter 

The filter was tested and tuned using a three degree of freedom (3DOF) point-mass 
simulated trajectory that was representative of the intended application. The simulated total 
velocity and the simulated axial acceleration due to aerodynamic forces were input to the filter. 
White Gaussian noise was added to the axial acceleration to generate a simulated 
measurement. It is important to note that to isolate the performance of the filter, the trajectory 
simulation and the Kalman filter had exactly the same piecewise function for CX as a function of 
Mach number. This is important because the filter is sensitive to errors in the CX function, and 
the filter was tuned with an essentially perfect model for the simulated acceleration measure- 
ments. The filter was subsequently tested on flight test data that included errors in the CX 
function. 

In order to run the filter on this data, several inputs are needed that adjust how the filter 
performs. The first input to the filter was the initial error covariance matrix. This matrix tells the 
filter how confident it should be in the start values of the state estimates. Since the firing 
platform for the projectile knows its initial altitude and quadrant elevation relatively accurately, 
the starting error covariances for these two states were small. Since the muzzle velocity was 
known with relatively little confidence, the error covariance for it was set much higher than the 
other two. The actual error covariance matrix input to the filter was 

P0
+ =     0     0.01        0 (16) 

10 0 0 
0 0.01 0 
0 0 0.001 

The next input to the filter was the dynamic model noise covariance matrix, Q. This 
matrix defines for the filter the expected error in the model from the true system dynamics. In 
practice, it is used to adjust the performance of the filter by telling it to trust the dynamics more 
or less as it acquires data. For this case, the filter was set to trust the filter altitude and flight 
path angle models because they did not affect the estimate of velocity very strongly. The filter 
predictions for these two states are good enough that even if they vary from the truth, the 
estimate for the velocity is still excellent. The dynamic model noise covariance matrix was set 
as follows 

Q = 

[0.5 0 0 
0 0.1 0 

[ 0 0 0.0001 
(17) 

The last input to the filter was the measurement covariance matrix, R. As mentioned 
previously, this is only a scalar variance for the filter in question, because there is only one 
measurement being taken. For this filter, R was set to 0.25. This value corresponds to the 
expected variance of the measurement device, in this case the axial accelerometer. This value 
was estimated from previous data available from the device on the projectile, and it was used to 
simulate the noise in the simulated acceleration data. 



RESULTS AND DISCUSSION 

Simulated Trajectory 

The first step was to run the filter under perfect conditions. In this case, the states were 
initialized perfectly to match the simulation. The initial velocity was 490 m/s, the initial altitude 
was 0 m, and the initial flight path angle was 30 deg. The filter initialization parameters were 
tuned to the values reported previously, until the filter gave a good estimate of the velocity. 
Figures 3 to 5 show the results of running the filter with perfect initialization. The red curves 
represent the true values from the simulation. The blue curves represent the filter estimates of 
the velocity, altitude, and glide angle, respectively. 
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Figure 3 
Velocity estimate from perfect initialization 



Altitude vs. Time 
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Figure 4 
Altitude estimate from perfect initialization 
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Flight path angle from perfect initialization 
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It is apparent from these plots that the filter is doing an excellent job of estimating all 
three states of the system. In fact, the velocity estimate is so good that it is difficult to see the 
truth curve since it is covered by the estimate. This is expected, since the dynamic model in the 
filter is equivalent to the dynamic model used by the simulation to produce the trajectory in the 
first place. 

The next step was to evaluate the performance of the filter under less than ideal 
conditions. The state that is least well known at gun launch is the muzzle velocity. This is due 
to the natural variation in propellant burn rate at different bed temperatures and differing 
propellant performance as it ages. The initial flight path angle is well known as the quadrant 
elevation to which the gun was set. In addition, the initial altitude of the firing platform is well 
known from instruments and maps available to the vehicle or firing crew. So the most likely 
stress case for this filter was a large error in initial muzzle velocity. It was chosen to initialize the 
filter with a muzzle velocity of 200 m/s. This is 290 m/s slower than the actual simulated muzzle 
velocity of 490 m/s. In addition, it stresses the filter further because the CX function is not well 
behaved at Mach equal to 1 and the filter was initialized in the subsonic regime, while the actual 
velocity was supersonic. The results of this run are shown below in figures 6 to 8. 
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Figure 6 
Velocity estimate with low muzzle velocity initialization 
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Altitude vs. Time 
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Figure 7 
Altitude estimate with low muzzle velocity initialization 
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Flight path angle with low muzzle velocity initialization 
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In this case, the filter converges very quickly to an accurate estimate of the velocity of the 
projectile, even though the initial estimate was far from the actual value. After it converges, the 
error is less than 1 m/s between the estimate and the truth value for the rest of the flight. 
However, the estimates for the altitude and flight path angle have more significant errors in 
them. This is due to how the dynamic model noise covariance matrix was set up. It is 
acceptable performance for this case because the projectile does not fly very high, and the 
overall variations in density and CX due to altitude are small to begin with. The error in the 
estimate of theta is accounted for already in the altitude estimate, so as long as the velocity is 
estimated with satisfactory accuracy, the filter has done its job. 

Performance of the Filter on Actual Data 

The next step of evaluating the filter performance was to run it on actual flight data from 
a projectile flying with an axial accelerometer. For this case, the CX model used was calculated 
from the accelerometer data itself based on measured projectile mass properties and known 
meteorological data taken during the test. This is not how the filter would be run in practice, 
because in that case CX would need to be known a priori. However, it does provide a test case 
to show how the filter operates on real data with real noise in it. This is an important test 
because the noise was assumed to be white Gaussian noise and the bias and drift rates were 
assumed to be negligible, but that was never verified. In addition, the test data included the 
effects of a real atmosphere-wind, non-ideal variations with altitude, etc. This test case 
provides information on how the filter might perform in a real tactical scenario. 

Figure 9 shows the projectile acceleration predicted in the filter displayed in blue over the 
red raw accelerometer flight data. The filter tracks the measurement quite accurately, 
smoothing out the noise. This plot is a good check to make sure that the filter predicted 
measurement is tracking the actual measurement. This means the filter dynamics and 
theoretical measurement equations are accurate enough to model the real scenario. 
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Figure 9 
Filter predicted acceleration versus measured acceleration 
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Figure 10 shows the filtered estimated velocity in blue over the measured radar total 
velocity in red. The filter tracks the actual velocity quite well. The differences between these 
two curves may come from the fact that the filter estimates air-relative velocity and radar 
measures ground-relative velocity. In addition, the accelerometer data starts a little after 2 sec 
into the flight. Since this was a flight test, the true states are not available, so the filter was 
initialized with an approximate guess-the initial expected velocity, gun altitude, and gun 
quadrant elevation. Errors in these initializations may have contributed somewhat to the errors 
between the estimated velocity and the radar velocity measurement. It is worth noting that the 
filter executed faster than real-time on a Dell Precision 690 3.00 GHz processor, in a single 
thread Matlab instance. Although not guaranteed, this means the filter is probably small enough 
to run on flight hardware in real-time. 
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Figure 10 
Velocity estimated from flight data compared with radar velocity measurement 

CONCLUSIONS 

In order to estimate air-relative velocity purely from accelerometer measurements and a 
priori knowledge of projectile characteristics, an extended hybrid Kalman filter can be used. 
This simple filter requires only three states to provide satisfactory performance in estimating 
projectile velocity. However, the filter is sensitive to errors in the knowledge of the axial force 
coefficient, and the air-relative velocity must be corrected with the wind velocity in order to 
measure ground-relative velocity. The air-relative velocity estimate may be used by other 
guidance algorithms on the projectile for aerodynamic lookup, while the ground-relative velocity 
might be used for navigation purposes. 
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